Simple Audio Synthesis on a PC

Christian Oeien

August 19, 2016

Abstract

The purpose of this study is to identify a set of algorithms that syn-
thesize a rich variety of audio. I provide implementations that allow for
further experimentation by combination, parameterization and extension.
Some measurements are done to investigate efficiency of implementation
techniques on a PC, specifically for memory cache utilization.

1 Introduction

The general motivation was to condense previous theory into working imple-
mentation of algorithms under APIs that allow a programmer to compose audio
output. I seeked to synthesize waves of sound, using simple computational tools
where the origin of each sound sample may be understood by the programmer.

I did not desire to enter into the field of general signal processing, but merely
aqcuire the understanding needed to synthesize sound, and apply techniques
found in previous work. I should mention the following, however. The Fourier
transform [1] enables to appreciate the frequencies present in a signal manifest-
ing along time, just as our ear does. A generalization of this is the z transform
[6], where the complex number plane is used to understand and classify filters
of signals. This theory is out-of-scope, and I preferred that a user of my API
would not need to manage this in order to use the given tools.

The provided API could not be concerned with neither z transforms or com-
plex numbers, but on frequencies, delays and amplitudes.

I do investigate the cues for orientation of a sounds source, as described in [2]
which was in the scope of enabling experimentation with our integral auditory
sense.

As shown by Karpluss and Strong in [3] it is possible to find algorithms that
are both computationally efficient and that can be controlled and tuned without
involving any advanced mathematical tools. It thus fit very well as an element
in the tool set. This example communicates what I searched for.

The problem of this work was of identifying simple computations and provide
an API that enables combination and parameterization. My intent was not to
delve deep into the physics and mathematics more than what was needed to
understand the computation itself and to arrange for programatic control.



I desired to present techniques using programming languages that are widely
used and hardware-efficient, and provide a powerful API model. Using suitable
languages I investigated what optimization techniques matters, and how they are
related to the PC architecture [4]. When optimizing for data cache utilization
the resulting program performs smaller parts of the calculations on an array,
that I refer to as unit, of several samples at a time, and in turn the next part
of the calculation, for a complete unit of values. This also yields smaller active
code which may give improved code cache utilization. This latter observation
was not studied further for memory size details and effects. That work would
be needed to arrive at any conclusion on these techniques.

2 Material and Methods

The strategy I used was to investigate in these broad fields of sciences for algo-
rithms that I could prototype and experiment with.

In agreement with the stated principal problem and scope, I chose to not
depend on techniques like Fourier transforms or any calculation using complex
numbers. It was difficult to find good material on how to configure digital
filters and I skimmed web pages on engineering, to find some calculation notes
permitting to adapt a filter with inputs like a desired peak frequency and gain.

I used the GNU C++11 compiler, Python3, on a Linux kernel running 4
CPU cores, whereas I use only one (for simplicity in implementation I do not
introduce threads) each as described in /proc/cpuinfo with cpuMHz : 600.000
cache size : 2048 KB TLB size : 1024 4K pages clflush size : 64 alignment : 64
address sizes : 40 bits physical, 48 bits virtual

3 Results

The following presentation of a set of tools and the understanding required to
configure them constitutes the result of this research, as well as the produced
program designs, implementation and investigation of their runtime leverage of
the PC architecture.

The two factors that makes up a sound, are its envelope and its timbre.
Envelope is how the loudness of a sound develops over time, from its beginning
to the end of the sound. A simple change of envelope can make an impact on
how we interpret the sound. A definition of timbre should then be the remaining
aspects of the sound, which is what spectrum of frequencies are present in the
vibration. Our ears are not providing us information on phases of the waves
except for the orientation cue of left and right ear for appropriate frequencies.
Effects may be added that are experienced as extrinsic to the sound.

It was found that non-harmonic sounds like crashes and percussion instru-
ments are hardest to mimic, with the trivial exception of the samples from a
pseudo-random function, which resembles wind or cascading water. Synthesiz-
ing percussion instruments require some understanding of the wave-guides and



modes, which is briefly introduced in [5]. Techniques that combine a periodic
function and series of basic mathematical operations arrive at sounds similar,
when engineered to arrive at the frequencies desired. It was found difficult
to identify one good tool for percussion. The user of the provided API must
combine and experiment.

3.1 Algorithms

The Karpluss-Strong sound generator algorithm is responsible for both envelope
and timbre, and a sort of resonance works inside of the operated buffer. A func-
tion is repeatedly applied to consecutive sound-sample values in a ring-buffer,
initially of random-values samples (white noise), so that the signal is smoothed
out in time; slow movements remains while fast ones are dampened; the low-
pass filter can be provided as parameter to the algorithm. Any periodicity of a
multiple of the buffer-length that happened to be present in the initial random
signal will be conserved more than other frequencies. Why this happens can be
understood by noting that for waves that meet their tail in the ring-buffer at
a very different amplitude, do at that point represent a high-frequency change.
Thus, like a plucked guitar string, with time after the excitement the sound gets
dominated by integer multiple frequencies corresponding to the base period of
the vibrating string. These frequencies are called overtones.

Another algorithm identified was frequency modulation (FM) which is valu-
able as a tool in that a vast range of timbres are created with relatively simple
calculations. I choose to implement real FM, and not the even less computation-
ally intensive algorithm of phase-shift modulation. Like amplitude modulation
(multiplication of two signals), non-harmonic series of frequencies are produced.
Even tho the mechanics of the production is not as in natural sources, this is
experienced as resembling a rich set of sound sources, like hit wood or a metallic
bell, depending on variances in the input parameters. The resemblance is due
to non-resonant wave-guides and frequency-dependent dampening of the various
modes of vibration in such media. What natural phenomenon is resembling to
the output almost seems to vary arbitrarily with input controls. I could specu-
late this is due to how the dynamics of the frequencies present are used by our
auditory sense to qualify the sound.

Vocal formants: Study of the spectra in vocal sounds shows that peaks along
the frequency domain is what permits us to distinguish an E from an U, or any
two vocals from each other. Additive synthesis may be used, and results can be
cross-phaded to create diphthongs. We add overtones to a base frequency to also
discover that providing a zero factor on even overtones we get air-instrument
timbres, as opposed to strings. This stems from physics of the wave origin,
where a pipe open in only one end permits a half-wave, and series of integer
waves plus that, hence even multiples of half the pipe-length.

It was found that the Bi-quad filter can be configured for well working be-
haviors like pass and notch filters. I also provide configuration-helpers for low-
and high- pass and shelf filters and a peaking-equilizer. We need comb and echo
to add impression of sounds created in a spatial surrounding, which are both



implemented by feeding (in the case of echo adding back the feed as well) from
a certain delay in a buffer. Chorus may also be considered an effect, where the
same timbre at slightly different pitches are added together. In my approach I
add parallel rendering of a periodic signal, of a wave provided as input.

3.2 Implementations

I provided three very different implementations of synthesis systems that all in-
clude at least the instruments as mentioned above. The first program is more of
a prototype, exemplifying different tools in use to compose a few guitar chords
filtered with a wah-wah pedal. The second approach is providing a framework
with fixed basic concepts like ADSR (attack, decay, sustain, release) envelopes,
vibrato, tremolo, and providing simple orientation in its stereo output. The
third implementation attempts to optimize CPU time by using memory for pe-
riodic functions and, more importantly, calculates samples by chunks (referred
to as units) at a time at each partial sample-calculation (referred to as genera-
tor). This latter technique, conceived with data-cache utilization as motivation
also results in smaller amount of code active at a given point in time and there-
fore also should ensure fast execution of the instructions. I demonstrated that
on a composition sufficiently information-dense to be audibly interesting, the
time needed on my system doubles when I reduce the unit-size from 100 to 8
samples. This indicates improved utilization of the data cache. However, there
is some added complexity to the program when going away from single-sample
calculations. Therefore I have no conclusive results when it comes to what
approach is more hardware efficient, and it certainly depends on what gener-
ators and composition is being rendered. The GNU profiler was used to find
bottlenecks, and debugger to appreciate the size of the code I run on my system.

I will now describe my three implementations with reference to the source
code. The first is a one-file prototype-like program, digitarp.cpp. It leverages
Karpluss-Strong and randomized comb filters, and also a Wah-pedal like filter
configuration. The two other projects of this work is mrender - that includes a
MIDI parser, and libsynth - the implementation that arranges for optimized
cache utilization, are both under HTTP://github. com/biotty/rmg/sound. The
Python3 wrapper on libsynth is named fuge and demonstrated in demo.py.
The MIDI file format was found to not be efficient to contain information on
gliding controls, and a direct scripted API more suitable for a composer. fuge
arranges for the possibility for infinite-time musical composition, by allowing to
insert top-level scores while the audio-units are generated.

Three output configurations are made available in fuge are mono, stereo by
pan and by orientation, and stereo by separate compositions, binaural.

I found that it is convenient in the unit-generator API to provide boolean
function more, in addition to generate, and define the invariant that only zero-
samples will be produced once more is false, and that the latter only transitions
to false.

The algorithms are implemented as separate unit-generators that are then
combined in various ways by the user of the API. One generator takes as input



other generators or envelopes. I use std::unique_ptr to link together this
hierarchy. A generator produces a chunk of samples, a unit, per invocation.
Envelopes are used for control parameters, including the period-function of a
looped signal.

4 Discussion

Even tho the user of the tools API is generally not concerned with sample rate,
he should be aware that the Nyquist theorem applies: Continuous functions
are recorded sample-by-sample just as in analog-to-digital conversion. When
performing additive synthesis one must dampen amplitude towards the Nyquist
frequency (not promptly nullify overtones when over a certain frequency). This
matters when providing an envelope for the formants (frequency domain peaks
in vocal) in the diphthong tool. For the Bi-quad filter tool it is important to
know that this is not a FIR filter like comb, but it is an IIR and resonates at
the peak frequency. I provide filter setup functions that allow the API user to
glide controls of intuitive input parameters like cut-off frequency. The API does
thus not require using any pole-zero model or complex numbers to compose the
filter parameters. Power-users knowledgeable on z transforms may compose the
Bi-quad parameters directly, also thru the same API.

The filters evaluation of the controls is an example of possible optimization
when input-control changes are an order of magnitude slower than sound-wave
movements. In those cases it could hold values and calculate only at a cer-
tain interval, like a hundred samples. In the case of the filter controls this
skipping must take random strides between each evaluation. Otherwise, the
step-movement may resonate with the filter, and accumulate unexpected en-
ergy.

Tools I found to apply simple concepts but that I omitted are the follow-
ing. Granular synthesis was omitted because it depends on sampled sounds,
and therefore not pure synthesis. Band-noise and chorus may be considered
extremes of grain-addition. There are techniques to perform digital (inverse)
Fourier transform hardware-efficiently. However, this would make the tool set
depend on advanced mathematics, and would best depend on an external library
which specializes at this task. Both of these goes against the goal of a broadly
understandable, simple and self-contained tool set.

The mrender program uses the traditional definition of the term envelope
and very similar semantics as the common ADSR model. The unit-generator
framework 1ibsynth uses envelope generally to mean any function f: R — R
where R is the set of all real numbers. The argument is typically time, in
seconds, and an envelope is used to provide both envelopes and wave shapes. 1
provide bases for a tabular, punctual and functional envelope, where the API
user defines the envelope with the respective kind of data.

In the libsynth unit-generator framework, some compromise is called for
to arrive at a good utilization of both the code cache and the data cache. Each
buffer-unit of samples are calculated, most often involving an envelope. An



example illustrating this is that in order to shape a timbre with attack and
release to become a sound, as done in the sound builder, I could generate a unit
of the envelope and then multiply that unit with the unit generated with the
timbre. Note that this layout leads to an extra copy of the data to arrive at
very small active code, and therefore poor exploitation of the code-cache. The
copy also thrashes data-cache for no re-use. I therefore calculate the envelope
sample-by-sample multiplying with the timbre unit.

A separate class of objects are created for composing of the generators, the
builder. The user of the API constructs a std::unique_ptr linked hierarchy
of instances of this type. There are two advantages of having this be a separate
type; their generate() would be a no-op wasting call activation records on
the stack. Secondly, it is a way of providing for lazy-initiation of generator
state, which is specifically important for a score (layout in time of a set of
other generators output). The builder has no further raison-d’etre. A generic
builder requires C++14 to provide rvalue-reference capture in lambdas in order
to capture input-builders held by a builder to be built (recursively initiating their
generators ready for operation).

Filters in the unit-generator framework take envelopes as input-parameters
and are sample-by-sample processors. Some unit-generators, like the karpluss
generator takes one filter as input, and strong is typically provided. I pursued
the idea of providing a generator that applies filters in parallel and then mixes
the results together. However, both for Bi-quad and delay-network filters (comb
and echo), this invites to unexpected audio results and poor hardware-leverage
respectively. The former will result in phase-shifts of the filters nullify the signal
at certain frequencies, and this is not controlled by a user of the configuration-
helper API. The latter will allocate buffers with redundant data when each filter
could have tapped into the passed signal at the desired delays of one and the
same buffer, allowing data cache utilization.

Providing stereo output uncovers a general problem with a std: :unique_ptr
based data-structure. The ownership contract locked into the designed types
does not hold when arranging for generator output limited and interleaved from
left and right ear. In pan or orientational stereo, they both originate from
one source. But a generator is managed with std: :unique_ptr, so there must
be no more than one owner. Even if I used raw pointers, there would be a
problem; the need for two copies of the same audio stream, to be processed
differently for right and left ear (some delay and filtering as cues to the listener
about sound orientation). My solution was to wrap std: :shared_ptr in a type
of generator and use this for the left and right generator paths. The wrapped
shared generator is doing the duplication of the audio. I generalized 2 to N in the
implementation. Solving the problem, I came to realize that std: :unique_ptr
expresses something significant to a design, and invites by its presence to address
the problem, namely the need to duplicate the audio units, that generally have
one unique user.

fuge allows composing music while generating, to allow for real-time perfor-
mance or by an infinite artificial-creativity script. Initially the output (master)
is set up.



left = new sum();

right = new sum();

master = new limiter(
make_unique<inter>(ug_ptr(left), ug_ptr(right)));

Rendering is done by repeatedly calling master->generate (u) and queuing
the samples to the loudspeaker driver, or piping to a tool like aplay on a typical
Linux-based operating system. The programmer can interleave this, following
a musical algorithm or as interrupted by a live musician, insert more to the
composition. Given a builder b,

std: :shared_ptr<generator> g =
std: :make_shared<ncopy>(2, se.b->build());

const double r = p * pi * .5;
left->c(make_unique<wrapshared>(g), std::cos(r));
right->c(make_unique<wrapshared>(g), std::sin(r));

In the above example the variable se would hold a tree of generator-builders
as composed by the program. I here add it onto the stereo output being gener-
ated, using a power-conserving mix of r € [0, 1] right-to-left.

References

[1] Ronald N. Bracewell. The fourier transform. In Scientific American 6, pages
86-95, 1989.

[2] David A Burgess. Techniques for low cost spatial audio. In GVU Technical
Report GIT-GVU-92-09, 1992.

[3] Kevin Karplus and Alex Strong. Digital synthesis of plucked string and
drum timbres. In Computer Music Journal 7(2). MIT Press, 1983.

[4] Markus Kowarschik and Christian Weiss. An overview of cache optimization
techniques and cache-aware numerical algorithms. In Algorithms for Mem-
ory Hierarchies LNCS 2625, pages 1-13. Proceedings of the GI-Dagstuhl
Forschungseminar, 2003.

[6] Gordon Reid. Synthesizing percussion. In Sound on Sound 11, 2001.

[6] J.O Smith. Pole-zero analysis. In Introduction to Digital Filters with Audio
Applications, 2007.



